第71章 湍流 第(1/2)分页

字数:   加入书签

A+A-

    NS方程的光滑性问题自然不容易,哪怕张尧觉得自己比起十年前更强,但想要解出这个问题的答案来也需要时间。www.fengchen.me

    关于为什么去解这个问题,并不是单纯为了炫技,只是因为这个问题的解对于他未来计划有不小的作用。

    尤其是在深海领域,这组方程常常被用于研究海洋流动,包括洋流、波浪和海洋中尺度涡旋等等问题。

    海底大开发是他未来计划重要的一环,如果能搞定彻底这个方程,求出通解的话,他甚至可以对其数学建模,编写一套专门的程序出来。

    目前人们对于深海海底所知甚少,它甚至比起天空对人们来说更为神秘。

    神秘意味着未知。

    未知意味着危险!

    正如十七世纪的笛卡尔把了平面直角坐标系代入了航海时代大大降低了海航的危险性。而探索海底存在的自然隐患莫过于异常的海底暗流问题。

    如果他能够解出这个问题,对人们彻底了解海底,以及在未来探索海底遇到异常情况时,人们就能够多一分保障。

    在证明思路上,张尧和丘教授一开始选择的路并不相同。

    关于这一点,丘教授也很遗憾,虽然他并没有办法全盘接受张尧的理论,但他选择了尊重。

    也许他能另辟蹊径呢?

    张尧认为这个问题的最核心的点还是在于湍流现象。

    什么是湍流?

    湍流是流体运动的一种复杂状态,其中流体的速度和压力不断变化,形成各种尺度的旋涡和流动结构。

    在湍流中,流体的速度不仅在空间上变化,而且在时间上也是随机的,这意味着流体的运动轨迹是混乱和无规则的。

    湍流流动由从宏观尺度到微观尺度的多种不同尺度的旋涡和流动结构组成。www.cuizhuan.me这些结构在不同的时间和空间尺度上形成和消散。

    湍流问题从被发现的那一刻就一直困扰着科学界,科学界怎么也无法理解为什么之前还可以预测的流体怎么会突然变得杂乱无序。

    关于湍流为什么会出现科学界也总结了很多原因,被广泛应用的雷诺数效应。

    雷诺数(Re)是流体惯性力与粘滞力之比的一个无量纲数,定义为Re = ρvL/μ,其中ρ是流体密度,v是特征速度,L是特征长度,μ是动力粘度。

    当雷诺数较高时,流体更可能表现出湍流特性。雷诺数超过一定的临界值,流体流动往往从层流向湍流转变。

    可这只是科学界关于什么情况下会出现湍流的预测。而且它还不是个固定的值,而是一种大概的估计。

    说句难听的,是人们先发现了湍流后,再根据湍流现象找出的一种规律。

    而且也不适用于所有情况下。

    因为就算对于同一种液体,在不同平滑、无扰动的管道中的流动可能在较高的雷诺数下仍然是层流。但只要其中的条件改变一点点,这它可能就会变成湍流。

    丘教授的想法和整个科学界一样,都是想从数学角度来解决这个问题,但张尧却不愿如此。

    比起那几行算式,他对于这个问题带来的现象更感兴趣。

    如果他能把湍流问题解决,那是否可以反推出这个问题的解呢?

    这听起来就像天方夜谭!

    你知道ns方程是用来干嘛的吗?

    它就是被用来解决湍流问题的,你现在居然想要直接解湍流问题,反推ns方程。

    因果颠倒了吧,我的张大教授哎!

    湍流哎!那可是流体力学里面的最终命题,如果张尧能把这个问题解决,流体力学这门学科就算完结了。以后在这个领域,没有人能比他更伟大。

    可这个命题并是那么容易的,湍流流动表现出高度的非线性和不稳定性。目前科学界没有任何一种办法可以准确的得到这个问题的解。

    无论是大涡模拟、统计理论、还是直接DNS方法通过数值求解,也就是用NS方程来直接模拟湍流数值,这些都是近似求解。

    没有任何一种方法可以精准的描述湍流问题。

    如果张尧只是个普通人,那关于湍流问题,他再怎么,也不可能解出来。

    他一个人就算站在巨人都肩膀上也无法在这个时间段把这个问题搞定。

    可是他有挂啊!

    湍流问题涉及的能量系统虽然复杂,但消耗却并不大。

    这属于他的梦中实验室完全可以运行的实验。

    他可以用这个世界上任何一种液体来测试,随便更换任意一种条件,微调任意一个变量来观测结果的变化。

    系统的等级一定是比湍流问题高出不知道多少个档次的。这是毋庸置疑的。

    在它的底层逻辑里一定是有关于这个问题的解。他虽然不能直接向